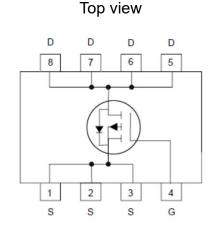


SSC8037GS1

P-Channel Enhancement Mode MOSFET


Features

VDS	VGS	RDSON Typ.	ID
201/	1251/	15mR@-10V	244
-30V	±25V	23mR@-4V5	-34A

> Description

This device is produced with high cell density DMOS trench technology, uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device particularly suits low voltage applications such as portable equipment, power management and other battery powered circuits, and low in-line power dissipation are needed in a very small outline surface mount package.

Pin configuration

Bottom View

100% UIS Tested.

- > Applications
- Load Switch
- NB battery
- DCDC conversion
- > Ordering Information

Device	Package	Shipping
SSC8037GS1	SOP8	4000/Reel

(Y: year/W: week) Marking

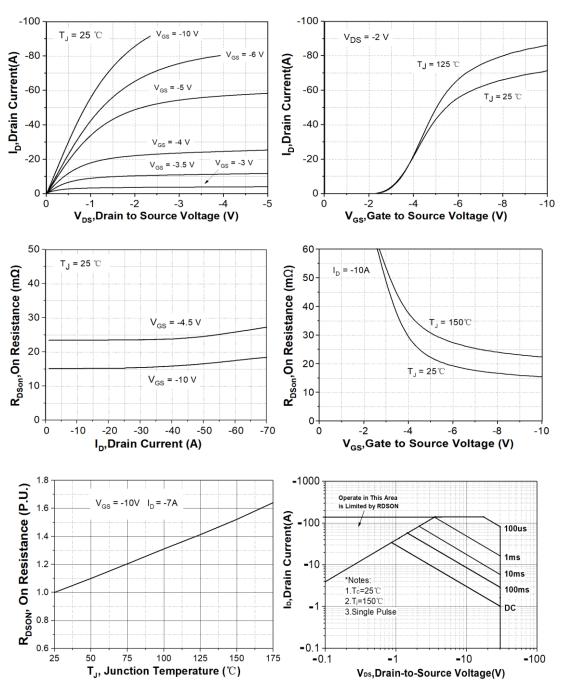
	• •		,		
Symbol	Parameter		Ratings	Unit	
V _{DSS}	Drain-to-Source Voltage		-30	V	
V _{GSS}	Gate-to-Source Voltage		±25	V	
I	Continuous Droin Ourrent d	TC=25℃	-34	А	
I _D	Continuous Drain Current d	TC=100℃	-19		
I _{DSM}	Continuous Drain Current ^a	TA=25 ℃	-10.7	•	
		TA=70 ℃	-7.8	A	
I _{DM}	Pulsed Drain Current ^b		-136	А	
I _{AS}	Avalanche Current ^b L=0.5mH		-21	А	
E _{AS}	Avalanche Energy ^b L=0.5mH		110	mJ	
P _D	Power Dissipation ^d	TC=25 ℃	28	W	
		TC=100℃	11	W	
P _{DSM}	Power Dissipation ^a	TA=25℃	2.8	W	
		TA=70 ℃	1.8	W	
TJ	Operation junction temperature		-55 to 150		
T _{STG}	Storage temperature range		-55 to 150	°C	

> Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

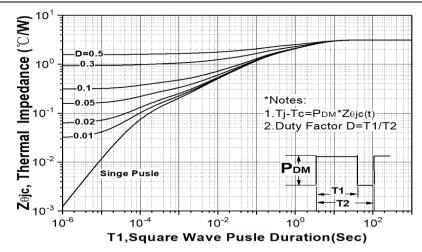
> Thermal Resistance Ratings($T_A=25^{\circ}C$ unless otherwise noted)

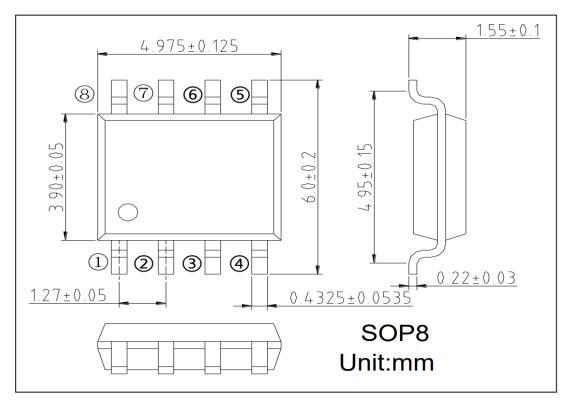
Symbol	Parameter	Ratings	Unit	
R _{0JA}	Junction-to-Ambient Thermal Resistance ^a 45			
R _{ejc} -	Junction-to-Case Thermal Resistance ^c	22	°C/W	
	Junction-to-Case Thermal Resistance ^d	4.4		

Note:


- a. The value of RθJA is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with TA=25°C.The value in any given application depends on the user is specific board design. The current rating is based on the t≤ 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The value of $R_{\theta JC}$ has been determined of the temperature difference between junction and the case surface in contact with water cooled copper heat sink .

> **Electronics Characteristics**($T_A=25^{\circ}C$ unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V , ID=-250uA	-30			V
V _{GS (th)}	Gate Threshold Voltage	VDS=VGS , ID=-250uA	-1	-1.6	-3	V
	Voltage			45	10	
$R_{DS(on)}$	Drain-Source On- Resistance	VGS=-10V , ID=-10A		15	19	mR
20(01)		VGS=-4.5V , ID=-7A		23	30	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-30V , VGS=0V			-1	uA
I _{GSS}	Gate-Source leak current	VGS=±25V , VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=-5V , ID=-5A		11		S
V_{SD}	Forward Voltage	VGS=0V , IS=-5A		-0.8	-1.3	V
Ciss	Input Capacitance	VDS=-15V , VGS=0V, f=1MHz		1300		
Coss	Output Capacitance			161		pF
Crss	Reverse Transfer Capacitance			183		
Q_{G}	Total Gate charge			25.5		
Q _{GS}	Gate to Source charge	VGS=-10V , VDS=-15V, ID=- 10A		4.3		nC
Q _{GD}	Gate to Drain charge			6.1		
T _{D(ON)}	Turn-on delay time	VGS=-10V, VDS=-15V, RL=1R, RG=3R		8		
Tr	Rise time			33.5		20
T _{D(OFF)}	Turn-off delay time			48		ns
Tf	Fall time			11		
Trr	Diode Recovery Time	IF=-10A,		23		ns
Qrr	Diode Recovery Charge	di/dt=200A/us		8		nC



> Typical Characteristics(TA=25°C unless otherwise noted)

> Package Information

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.