

SSCN3904GSG

Dual NPN Switching Transistor

Features

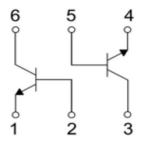
VCB	VCE	VBE	IC
60V	40V	6V	200mA

Description

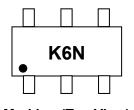
The dual NPN transistor is designed for use in linear and switching applications. The device is housed in the SOT-363 package, which is designed for telephony and professional communication equipment.

Applications

- General purpose switching and amplification
- Telephony and professional communication equipment


Ordering Information

Device	Package	Shipping
SSCN3904GSG	SOT-363	3000/Reel

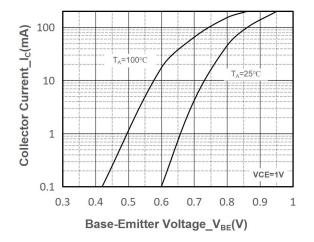

> Pin configuration

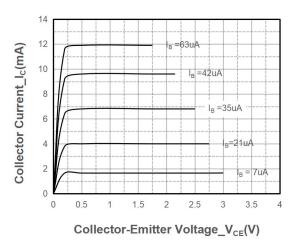
SOT-363

Circuit Diagram

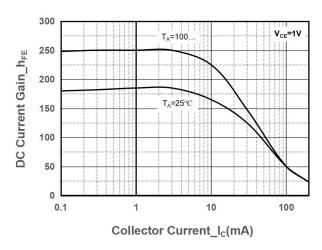
Marking (Top View)

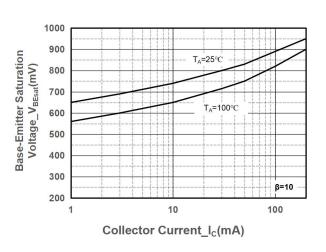
ightharpoonup Absolute Maximum Ratings(T_A=25°C unless otherwise noted)


Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector- Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6	V
Collector Current-Continuous	Ic	200	mA
Collector Power Dissipation	Pc	200	mW
Junction Temperature	TJ	150	$^{\circ}$
Storage Temperature	T _{STG}	-55 to 150	$^{\circ}$

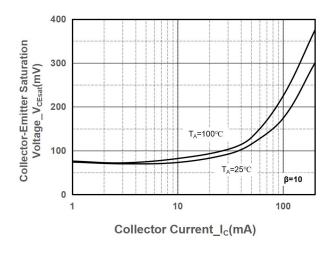

➤ Electrical Characteristics (T_A=25°C unless otherwise noted)

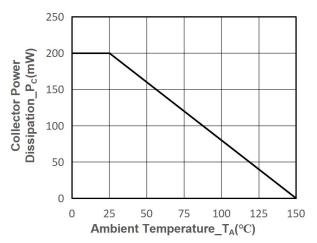
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Collector-Base Breakdown Voltage	ВУсво	I _C =10uA, I _E =0	60			V
Collector-emitter Breakdown Voltage	BV _{CEO}	I _C =1mA, I _B =0	40			V
Emitter -Base Breakdown Voltage	BV _{EBO}	I _E =10uA, I _C =0	6			V
Collector Cutoff Current	Icex	V _{CE} =30V, V _{EB} =3V			0.05	uA
Collector Cutoff Current	Ісво	V _{CB} =30V, I _E =0			0.05	uA
Emitter Cutoff Current	I _{EBO}	V _{EB} =3V, I _C =0			0.05	uA
		V _{CE} =1V, I _C =0.1mA	40			
		V _{CE} =1V, I _C =1mA	70			
DC Current Gain	h _{FE}	V _{CE} =1V, I _C =10mA	100		300	
		V _{CE} =1V, I _C =50mA	60			
		V _{CE} =1V, I _C =100mA	30			
Collector Emitter Seturation Voltage	V _{CE(sat)1} I _C =10mA, I _B =1mA		0.2	V		
Collector-Emitter Saturation Voltage	V _{CE(sat)2}	I _C =50mA, I _B =5mA			0.3	V
Dana Fraittan Catumatian Valtaria	V _{BE(sat)1}	I _C =10mA, I _B =1mA	0.65		0.85	V
Base-Emitter Saturation Voltage	V _{BE(sat)2}	I _C =50mA, I _B =5mA			0.95	V
Transition frequency	f⊤	V _{CE} =20V,I _C =10mA f=100MHz	300			MHz
Collector output capacitance	Cob	V _{CB} =5V,I _E =0,f=1MHz			4	pF
Noise figure	N _F	V_{CE} =5V, Ic=0.1mA, f=1kHz, R _S =1KΩ			5	dB
Delay Time	t _d	V _{CC} =3V, V _{BE(off)} =-0.5V I _C =10mA, I _{B1} =1mA			35	ns
Rise Time	t _r	V_{CC} =3V, $V_{BE(off)}$ =-0.5V I_{C} =10mA, I_{B1} =1mA			35	ns
Storage Time	ts	V_{CC} =3 V , I_{C} =10 mA I_{B1} = I_{B2} =1 mA			200	ns
Fall Time	t _f	V_{CC} =3 V , I_{C} =10 mA I_{B1} = I_{B2} =1 mA			50	ns


> Typical Performance Characteristics (T_A=25℃ unless otherwise noted)



Collector Current vs. Base-Emitter Voltage

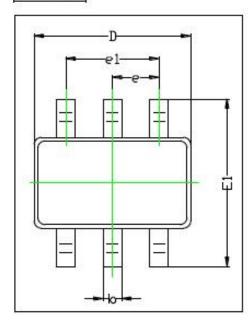

Collector Current vs. Collector-Emitter Voltage

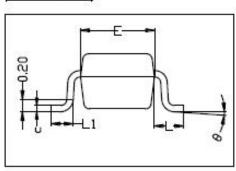


DC Current Gain vs. Collector Current

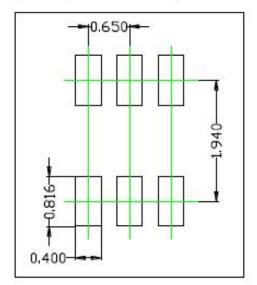
V_{BE(sat)} vs. Collector Current

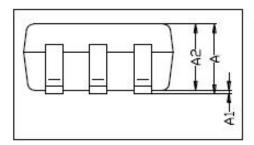
V_{CE(sat)} vs. Collector Current


Power derating vs. Ambient temperature


Package Information

SOT-363


TOP VIEW


SIDE VIEW

SOLDRING PATTERN

FRONT VIEW

SYMBOL	DIMENSIONS IN MILLIMETER		
SIMBOL	MIN	MAX	
Α	0.900	1.000	
A1	0.000	0.100	
A2	0.900	1.000	
b	0.150	0.300	
С	0.100	0.150	
D	2.000	2.200	
E	1.150	1.350	
E1	2.150	2.400	
e	0.650 TYP.		
e1	1.200	1.400	
L L	0.525 REF.		
L1	0.260	0.450	
θ	0.	8*	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.