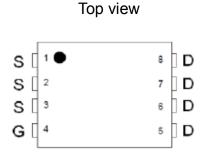
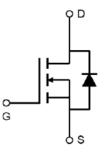


SSC8230GN6

N-Channel Enhancement Mode MOSFET

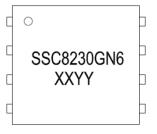

> Features


VDS	VGS	RDSON Typ.	ID
2014		5.7mR@10V	
30V	±20V	7.4mR@4V5	80A

> Description

This device uses advanced trench technology to provide excellent RDSON and low gate charge. This device is suitable for use as a load switch or in PWM applications.

> Applications


- Load Switch
- Portable Devices
- DCDC conversion

> Ordering Information

Device	Package	Shipping
SSC8230GN6	PDFN5x6	5000/Reel

Bottom View

(XX: year/YY: week)

Marking

Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-to-Source Vo	ltage	30	V
V _{GSS}	Gate-to-Source Vo	Itage	±20	V
	Continuous Dusis Current	TC=25C°	80	А
lD	Continuous Drain Current	TC=100C°	51	А
		TA=25 C°	22	А
IDSM	Continuous Drain Current ^a	TA=70 C°	17	А
Ідм	Pulsed Drain Curr	ent ^b	120	А
Eas	Avalanche Energy, L=	0.05mH	51	mJ
D	Devuer Dissinction (TC=25C°	60	W
PD	Power Dissipation °	TC=100C°	24	W
	Device Disation 2	TA=25 C°	5.5	W
Р _{DSM}	Power Dissipation ^a	TA=70 C°	2.8	W
ТJ	Operation junction tem	perature	-55 to 150	°C
Tstg	Storage temperature	range	-55 to 150	°C

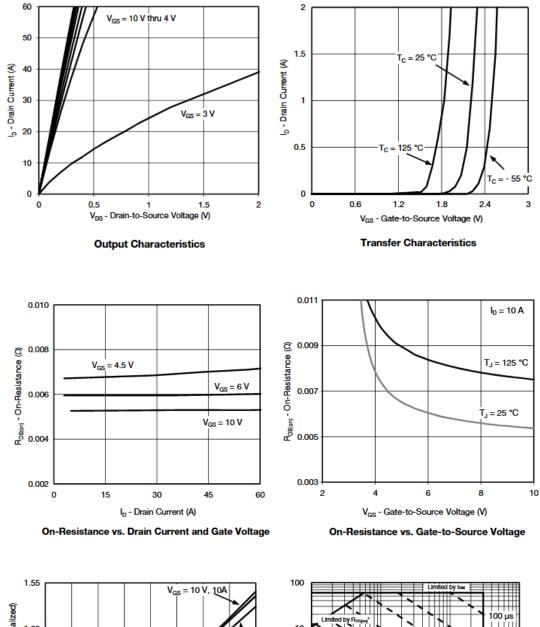
> Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

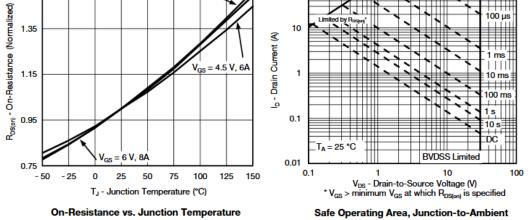
> Thermal Resistance Ratings(T_A=25 °C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
$R_{ extsf{ heta}JA}$	Junction-to-Ambient Thermal Resistance ^a		30	°C 1.M
R _{θJC}	R _{0JC} Junction-to-Case Thermal Resistance		2.5	°C/W

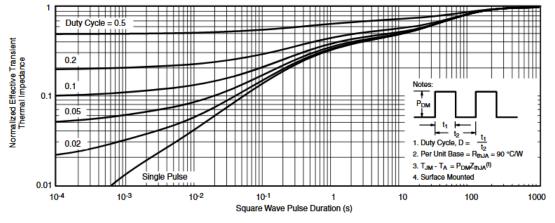
Note:

- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A=25C°. The value in any given application depends on the user is specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

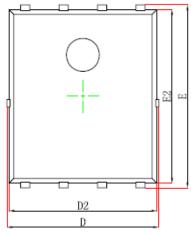


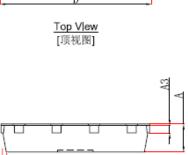

Electronics Characteristics(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	VGS=0V,ID=250uA	30			v	
$V_{GS \ (th)}$	Gate Threshold Voltage	VDS=VGS,ID=250uA	1.2	1.5	2.8	V	
D	Drain-Source On-	VGS=10V,ID=18A		5.7	6.5	~ -	
$R_{DS(on)}$	Resistance	VGS=4.5V,ID=14A		7.4	9	mR	
I _{DSS}	Zero Gate Voltage VDS=30V,VGS=0V Drain Current			1	uA		
I _{GSS}	Gate-Source leak current	VGS=±20V,VDS=0V			±100	nA	
G _{FS}	Transconductance	VDS=15V,ID=15A		42		S	
V_{SD}	Forward Voltage	VGS=0V,IS=1A			1.3	V	
Ciss	Input Capacitance			1680			
Coss	Output Capacitance	VDS=15V, VGS=0V, f=1MHz		266		pF	
Crss	Reverse Transfer Capacitance			131			
T _{D(ON)}	Turn-on delay time			16			
Tr	Rise Time	VGEN=10V,		10			
T _{D(OFF)}	Turn-off delay time	VDS=15V, RL=1.5R,		30		ns	
Tf	Fall Time	RG=1R,ID=10A		11			
Q _G	Total Gate Charge			6.2			
Q_{GS}	Gate Source Charge	VGS=10V, VDS=20V, ID=12A		2.3		nC	
Q _{GD}	Q _{GD} Gate Drain Charge			2.1			

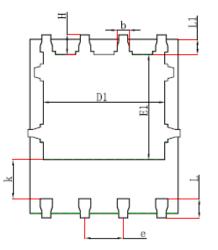


> Typical Characteristics(T_A=25°C unless otherwise noted)





Normalized Thermal Transient Impedance, Junction-to-Ambient


> Package Information

<u>Side View</u> [側视图]

Ourseland	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
А	0.900	1.000	0.035	0.039
A3	0.25	4REF	0.010	DREF
D	4.944	5.096	0.195	0.201
E	5.974	6.126	0.235	0.241
D1	3.910	4.110	0.154	0.162
E1	3.375	3.575	0.133	0.141
D2	4.824	4.976	0.190	0.196
E2	5.674	5.826	0.223	0.229
k	1.190	1.390	0.047	0.055
b	0.350	0.450	0.014	0.018
е	1.270TYP		0.050	DTYP
L	0.559	0.711	0.022	0.028
L1	0.424	0.576	0.017	0.023
Н	0.574	0.726	0.023	0.029
θ	10°	12°	10°	12°

<u>Bottom Vlew</u> [背视图]

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.